Home About us MoEF Contact us Sitemap Tamil Website  
About Envis
Whats New
Microorganisms
Research on Microbes
Database
Bibliography
Publications
Library
E-Resources
Microbiology Experts
Events
Online Submission
Access Statistics

Site Visitors

blog tracking


 
Metabolic Engineering
Volume 65, 2021, Pages 30-41

Switching metabolic flux by engineering tryptophan operon-assisted CRISPR interference system in Klebsiella pneumoniae

Peng Zhaoa, Qingyang Lib, Pingfang Tiana, Tianwei Tana

Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China.

Abstract

One grand challenge for bioproduction of desired metabolites is how to coordinate cell growth and product synthesis. Here we report that a tryptophan operon-assisted CRISPR interference (CRISPRi) system can switch glycerol oxidation and reduction pathways in Klebsiella pneumoniae, whereby the oxidation pathway provides energy to sustain growth, and the reduction pathway generates 1,3-propanediol and 3-hydroxypropionic acid (3-HP), two economically important chemicals. Reverse transcription and quantitative PCR (RT-qPCR) showed that this CRISPRi-dependent switch affected the expression of glycerol metabolism-related genes and in turn improved 3-HP production. In shake-flask cultivation, the strain coexpressing dCas9-sgRNA and PuuC (an aldehyde dehydrogenase native to Kpneumoniae for 3-HP biosynthesis) produced 3.6 g/L 3-HP, which was 1.62 times that of the strain only overexpressing PuuC. In a 5 L bioreactor, this CRISPRi strain produced 58.9 g/L 3-HP. When circulation feeding was implemented to alleviate metabolic stress, biomass was substantially improved and 88.8 g/L 3-HP was produced. These results indicated that this CRISPRi-dependent switch can efficiently reconcile biomass formation and 3-HP biosynthesis. Furthermore, this is the first report of coupling CRISPRi system with trp operon, and this architecture holds huge potential in regulating gene expression and allocating metabolic flux.

Keywords: CRISPR interference, Klebsiella pneumoniae, Glycerol, 3-Hydroxypropionic acid, Biomass.

Copyright © 2005 ENVIS Centre ! All rights reserved
This site is optimized for 1024 x 768 screen resolution